Link Search Menu Expand Document

MixNet

Joining Force of Classical and Modern Approaches Toward the Comprehensive Pipeline in Motor Imagery EEG Classification

Pypi Downloads DOI

Python API and the novel algorithm for motor imagery EEG classification named MixNet. The API benefits BCI researchers ranging from beginners to experts. We demonstrate examples of using the API for loading six benchmark datasets, preprocessing, training, and validating SOTA models, including MixNet. In summary, the API allows the researchers to construct the pipeline to benchmark the newly proposed and recently developed SOTA models.


Getting started

Dependencies

  • Python==3.8.10
  • tensorflow-gpu==2.7.0
  • tensorflow-addons==0.16.1
  • scikit-learn>=1.2.2
  • wget>=3.2
  • h5py==3.5.0
  • pandas>=2.0
  1. Create docker container with dependencies
    docker pull tensorflow/tensorflow:2.7.0-gpu
    docker run -ti --name mixnet_container docker.io/tensorflow/tensorflow:2.7.0-gpu bash
    wget https://github.com/Max-Phairot-A/MixNet/blob/main/requirement.txt
    pip install -r requirements.txt
    

Installation:

  1. Using pip
  pip install mixnet-bci
  1. Using the released python wheel
  wget https://github.com/Max-Phairot-A/MixNet/releases/tag/v1.0.0/mixnet_bci-1.0.0-py3-none-any.whl
  pip install mixnet_bci-1.0.0-py3-none-any.whl

Usage

Tutorial: https://mixnetbci.github.io

Citation

To read & cite our paper, please go to our preprint and our paper.

P. Autthasan, R. Chaisaen, H. Phan, M. D. Vos and T. Wilaiprasitporn, “MixNet: Joining Force of Classical and Modern Approaches Toward the Comprehensive Pipeline in Motor Imagery EEG Classification,” in IEEE Internet of Things Journal, vol. 11, no. 17, pp. 28539-28554, 1 Sept.1, 2024, doi: 10.1109/JIOT.2024.3402254.

@ARTICLE{10533256,
  author={Autthasan, Phairot and Chaisaen, Rattanaphon and Phan, Huy and Vos, Maarten De and Wilaiprasitporn, Theerawit},
  journal={IEEE Internet of Things Journal}, 
  title={MixNet: Joining Force of Classical and Modern Approaches Toward the Comprehensive Pipeline in Motor Imagery EEG Classification}, 
  year={2024},
  volume={11},
  number={17},
  pages={28539-28554},
  keywords={Electroencephalography;Task analysis;Feature extraction;Measurement;Internet of Things;Multitasking;Motors;Adaptive gradient blending;brain-computer interface (BCI);deep learning (DL);motor imagery (MI);multitask learning},
  doi={10.1109/JIOT.2024.3402254}}

Source Code

View source on GitHub

License

Copyright © 2021-All rights reserved by INTERFACES (BRAIN lab @ IST, VISTEC, Thailand). Distributed by an Apache License 2.0.